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Undesired consequences in the beginning stages of blade cavitation often limit allow- 
able propeller speeds, which usually are characterized by the critical cavitation number. 
These speeds can be increased by choosing the proper profiles of the cylindrical sections of 
the propeller. The principle of such a choice has been given [i] for the plane uniform 
stationary flow of an ideal fluid. According to this principle, the smallest cavitation 
number is attained by the profile of a set with identical lift coefficients, which has the 
largest minimum pressure along the isobaric section on the lift side. Specific examples of 
such blade profiles have constructed [2, 3]. However, practical use of optimum [1-3] pro- 
files for cylindrical sections of propeller blades on test stands [4] has led to ambiguous 
results: while water tunnel tests of model propellers designed from [i] give a measured 
critical cavitation number oi, which is much less than the value of o i for prototype pro- 
pellers, actual ship propellers of the same shape exhibit both smaller and significantly 
higher values of a i. 

In order to understand this situation, which arises in attempts to apply the theory [i] 
in engineering practice, the assumptions of this theory must be analyzed for flow conditions 
around blades. In view of the complexity of such calculations under natural conditions, we 
analyze a series of model problems to evaluate the assumptions. In the first problem, we 
examine the consequences of the widely used engineering technique of separately finding the 
thickness and curvature of the flat sections of the blades. In the second, we combine the 
results of the theory [i], which assumes that the cavity dimensions are infinitely small, and 
more accurate computations of the critical cavitation number, which include finite cavity 
dimensions. In the third problem we investigate how the nonuniformity of the flow against 
the blade in the boundary layer of the ship's hull affects the pressure distribution and the 
conditions for creating cavitation on the blade profiles. 

i. The assumptions and results used [4] in the theory [1-3] are related to a plane 
uniform incoming flow, while the highly three-dimensional flow around the blades makes the 
flow at each cylindrical cross section nonuniform and variable along the chord. To some 
degree, this nonuniformity is considered by a widely used technique [5] of separately 
specifying the thickness and curvature of the profile midline: the stationary nonuniformity 
is considered approximately by the change of curvature in the cross section profile as com- 
pared to the solution to the plane problem. The primary basis of this change is the same as 
for the change in the angles of attack of blade cross sections in going from one section to 
another. Then the thickness should be found from the reverse solution of blade theory, by a 
formal comparison with the problem of the ideal cavitation profile [6]: 

A r  = O; ( 1 . 1 )  

O ~ / O N I  s ~ O; (1.2) 

lira (I+ ~ )  =0; 
~+y~\ (1.3) 

a~1 o} = o; (1.4) 

~sk= ?o; (1.5) 
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Ny (x~) = No; (1 .6 )  

~)0~ * 
2 -d-FdS = C v. (1,7) 

(s) 

Here S is the total surface of the profile; S k is an isobaric section of S; T and N are the 
tangent and normal unit vectors to S; ~ is the angle of attack; {x, y} = {i, 0} are the coor- 
dinates of the aft sharp edge of the profile at which the Zhukovskii-Chaplygin condition 
(1.4) is satisfied; C* is a given value of Cy; and x 2 is the abscissa of the point at which 

Y 
S k is connected to the tail section of the profile Sf. The constant Y0 is chosen such that 

(1.6) is satisfied; that is, the continuity of the normal to S is maintained. The shape of 
the leading side of the profile over the whole range of values of the lift coefficients 
C** < Cy < C* must satisfy the condition Cpm = ~ - 1 for Cpm = Imin Cpl , where Cp is the 
Y Y 

dimensionless pressure coefficient. For symmetric profiles, C** = -C* and the beginning of 
Y Y 

S k should be set [2] at the forward edge {x, y} = {0, 0}. The simplest choice for Sf is a 

wedge with a given acute angle 0 of the trailing edge. The profile shape is sought by 
roughly the same sequence of operations used for solving the nonlinear ideal cavitation 
problem [6]. 

Typical shapes of the profile thickness, which are constructed in this manner are 
shown in Fig. i, where the numbers on the curves are the corresponding values of C* and C 

Y 
is the chord of the profile. The dependence of Cpm on the largest thickness 6 of this 

family of profiles, shown on the left part of Fig. 2, determines the smallest values of CDm, 
which in principle can be attained on symmetric blade profiles for given values of C* (t h$ 

Y 
values shown near the calculated curves) and a given type of Sf. These values are weakly 
dependent on the shape of Sf: curves on the left part of Fig. 2 correspond to profiles 
with wedge-shaped Sf's, but the black dots correspond to profiles with parabolic Sf's, and 
they practically lie on the curves, even for relatively long Sf's, which correspond to 
small C*'s. Therefore these functions can be considered universal for symmetric profiles 

Y 
which are optimum in the sense of [i]. The center section 0f Fig. 2 compares curves of 
Cpm(Cy) for these profiles (the solid curves 1 and 2) and for profiles that are known to. have 

high properties from NACA-0012 and NACA-66 with the same 6 (dashed curves 1 and 2). These 
data confirm the assertion that values of Cpm no higher than for a given profile of the type 
in NACA-66 are provided in a narrower range of attack angles or Cy values. 

Because the extension of the blade is on the order of unity, changes in the profile 
curvature, using the techniques in [5], can be rather large (for example on the order of 0.02). 
If the selection of partitions were optimum in this case, then the constructed symmetric pro- 
files could be treated as optimum in the sense [i] of the optimum thickness distribution; but 
solid curve 3 in the central part of Fig. 2 shows that the combination of the same thickness 
as in curve 2 with the NACA curvature a = 0.8 is worse than the curve for the NACA-66 diagram 
with the same 6 and the largest relative curvature d c = 0.02 (the dashed curve 3). These 
results demonstrate that the separation of the profile shape into curvature and thickness is 
not optimum and can have an excessive Cpm. 

2. However, Cpm cannot be set equal to oi; they are equal only for infinitely small 
cavities. Actually, because of surface-tension forces, the dimensions of the cavity and 
radius of curvature of its boundary r can not be set to be too small. The equilibrium condi- 
tion of this boundary is expressed by Laplace's formula 

PR = P + 2~r-i' (2.1) 
where ~ is the surface tension coefficient on the boundary between the gas and the liquid; 
and PK and p are the pressures on opposite sides of the boundary. The wettability of the 
blade surface requires a large curvature of this boundary near the line where the boundary 
joints the streamlined body. The minimum cavity dimensions which satisfy (2.1) are negligibly 
small compared to the blade extension; however, these values of r are the same order of 
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magnitude as the boundary layer thickness of the profile near the leading edge. Therefore 
the cavity causes a local pressure redistribution, similar to an obstacle in the boundary 
layer. The fundamentals of the theory, the method, and a calculated example of the initial 
stages of cavitation are given in [7] and [8]. Here the right side of Fig. 2 only shows how 
Cpm and a i can differ: curve 2i is the calculated function o i (~) for the profile NACA-4412 
for Re = 2"106 and C = 0.i m; curve 2 shows Cpm(~) for this profile; x shows experimental 
values of oi(~) taken from [9]. The correlation is excellent. Curves li and i are the 
functions ai(a) and Cpm(~) for the optimum (per [i]) 12% profile already shown in Fig. 2. 
Curve li corresponds to the same Re, C, and 6 used for 2i. The depression of oi, compared 
to Cpm , is roughly the same for both traditional and optimum [i] profiles. Therefore, the 
reported [4] disagreement between theory [1-3] and experiment, cannot explain the significantly 
different effect of viscosity and capillary attraction on the different profiles. 

3. However, the profiles obtained here and in [2] and [3] were constructed for a 
stationary incident flow, while the blades of hydraulic machinery usually intersect a non- 
uniform flow as they turn, because the flow around them is not stationary, even for a con- 
stant blade rotation rate. In order to avoid overestimating the effect of the nonuniformity, 
this variability must be considered in the estimates. The effect of nonstationary incident 
flow around blade profiles usually is analyzed theoretically within the framework of a 
mechanically ideal fluid [i0, ii]. If this nonuniformity is modeled with the use of a combi- 
nation of hydrodynamic singularities which are adjusted relative to the profile, then the 
flow remains as a potential flow, and the curve for r along with (1.1)-(1.4), will conserve 
vorticity 

~Oq) --~Fi const., .~-~-dS ---- (3.1) 
(s) t 

where F i is the intensity of the vortices in the flow. These calculations use a simplifying 
assumption on the vortex sheet behind the profile: it deviates negligibly from the estab- 
lished curve. The correspondence of rsults of such calculations with experiments can be 
judged from Fig. 3, in which calculated and measured [12] pulsation amplitudes of the dimen- 
sionless pressure coefficient C' on the lift side of the blade are compared with the NACA- 

P 
0012 profile. The instability of the flow in these tests was created by a rotating elliptical 
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cylinder. The resultant pulsations in the absence of the blade were measured and presented 
in [12]. It proved possible to represent r in (1.1)-(1.4) and (3,1) in the form 

= ~ l q - ~  ~ 3 - - x - - y t g a ,  ( 3 . 2 )  

where  Cz i s  t h e  p o t e n t i a l  f o r  p e r t u r b a t i o n s  f rom t h e  r o t a t i n g  c y l i n d e r ,  which  i s  a p p r o x i -  
mated as t h e  sum o f  p o t e n t i a l s  f o r  s i n g u l a r i t i e s  o f  c o n s t a n t  and v a r i a b l e  i n t e n s i t y ,  which  
a r e  s e l e c t e d  f rom measuremen t s  o f  t h e  f low v e l o c i t y  in  t h e  t u n n e l  a t  t h e  l o c a t i o n  o f  t h e  
b l a d e  in  i t s  a b s e n c e ;  r i s  t h e  p o t e n t i a l  o f  t h e  v o r t e x  s h e e t ,  which  depends  o n l y  on one 
unknown - t h e  i n t e n s i t y  o f  t h e  t i m e - d e p e n d e n t  v o r t e x  f rom t h e  t r a i l i n g  edge ;  r i s  t h e  
p o t e n t i a l  o f  d i s t r i b u t e d  s i n g u l a r i t i e s  in  t h e  l i m i t s  o f  t h e  p r o f i l e ,  whose i n t e n s i t y  v a l u e s  
can be d e t e r i n e d  f rom ( 1 . 1 ) - ( 1 . 4 )  and ( 3 . 1 )  f o r  any t .  As f a r  as  can be j u d g e d  f rom F i g .  3, 
t h e  c a l c u l a t e d  p u l s a t i o n s  a r e  b a r e l y  h i g h e r  t h a n  t h e  e x p e r i m e n t a l  o n e s ;  t h e r e f o r e  t h e  c a l c u -  
l a t e d  s u r g e s  o f  Cpm in  a n o n u n i f o r m  n o n s t a t i o n a r y  f low e v i d e n t l y  w i l l  n o t  exceed  t h e  e x p e r i -  
m e n t a l  s u r g e s .  

The n o n u n i f o r m i t y ,  which  i s  c h a r a c t e r i s t i c  f o r  t h e  i n c i d e n t  f l ow a round  a p r o p e l l e r  
b l a d e  [5] and which  i s  c a u s e d  by t h e  n o n u n i f o r m i t y  o f  t h e  v e l o c i t y  f i e l d  in  t h e  b o u n d a r y  l a y e r  
o f  t h e  s h i p ' s  h u l l ,  can  a l s o  be modeled  c o n v e n i e n t l y  w i t h  t h e  a s s u m p t i o n  ( 3 . 2 ) .  I n  t h e  r e -  
s u i t s  o f  such  c a l c u l a t i o n s  p r e s e n t e d  be low,  Cz i s  t h e  p o t e n t i a l  o f  a s o u r c e - s i n k  p a i r  d r i f t -  
ing  p a s t  t h e  p r o f i l e .  The d i s t a n c e  be tween  t h e  s i n g u l a r i t i e s  and t h e i r  i n t e n s i t y  were  
v a r i e d  in  a way to  g u a r a n t e e  a g i v e n  w i d t h  X o f  t h e  zone  o f  n o n u n i f o r m i t y ,  w i t h i n  which  V = 
- a r  d r o p s  an o r d e r  o f  m a g n i t u d e  f rom a g i v e n  v a l u e  V m. 

F i g u r e  4 shows t h e  dependence  o f  C and C on t h e  d i m e n s i o n l e s s  t i m e  ~ = tU~/C f o r  pm y 
v a r i o u s  p r o f i l e s  and p o t e n t i a l s  r  These  c u r v e s  were  c a l c u l a t e d  by s o l v i n g  ( 1 . 1 ) - ( 1 . 4 )  and 
( 3 . 1 ) .  I n  a l l  c a s e s ,  ~ = 0 (T = 1) c o r r e s p o n d s  t o  t h e  l e a d i n g  ( t r a i l i n g )  edge  p a s s i n g  t h r o u g h  
t h e  a v e r a g e  o f  t h e  n o n u n i f o r m i t y .  Curves  1 and 2 a r e  t h e  f u n c t i o n s  C (~)  o f  t h e  NACA-0012 
p r o f i l e  w i t h  6 = 0 .12  f o r  ~ = ~ /180 and ~ /90 ,  r e s p e c t i v e l y ,  f o r  X = 0~5 C and V m = ~ / 9 0 .  
The p o i n t s  which  a r e  p r a c t i c a l l y  i d e n t i c a l  t o  c u r v e  2 (on t h e  s c a l e  o f  F i g .  4) a r e  t h e  f u n c -  
t i o n  Cy(~)  f o r  t h e  optimum ( p e r  [ 1 ] )  12% p r o f i l e  in  a f l o w  w i t h  t h e  same n o n u n i f o r m i t y .  The 
c u r v e s  l c  and 2c a r e  f o r  t h e  NACA-0012 p r o f i l e  and c o r r e s p o n d  t o  t h e  f u n c t i o n  Cpm(T) f o r  t h e  
same c o n d i t i o n s  as  f o r  c u r v e s  1 and 2. Curves  lb  and 2b a r e  t h e  a n a l o g o u s  f u n c t i o n s  f o r  t h e  
optimum p r o f i l e .  I n  a n a l y z i n g  t h e  f u n c t i o n s  in  F i g .  4,  we n o t e  t h e  a b s e n c e  o f  a m u t u a l l y  
i d e n t i c a l  c o r r e s p o n d e n c e  o f  Cpm and Cy. We a l s o  n o t e  n o t  o n l y  t h e  s t r o n g  d e p e n d e n c e  o f  
s u r g e s  in  Cpm on t h e  p r o f i l e  s h a p e ,  bu t  a l s o  t h e  s i g n i f i c a n t  p h a s e  s h i f t  be tween  Cy(~) and 

Cpm(<). The s u r g e  in  Cpm when t h e  l e a d i n g  edge  p a s s e s  t h r o u g h  t h e  n o n u n i f o r m i t y  i n c r e a s e s  

w i t h  aCpm/aCy , and t h e  optimum ( p e r  [ 1 ] )  p r o f i l e  has  a s i g n i f i c a n t  a d v a n t a g e  o n l y  when t h e  

u n i f o r m i t y  e x c i t e s  a s t a t e  r e l a t i v e  t o  t h e  c e n t e r  " p l a t f o r m "  o f  t h e  d i ag ram o f  Cpm(Cy) , and 

n o t  t o  i t s  s i d e  b r a n c h e s .  Here ,  as  can be seen  f rom a c o m p a r i s o n  o f  t h e  c u r v e s  in  F i g s .  2 
and 4,  t h e  l o c a l  g rowth  in  [ a r  i n  a n o n u n i f o r m i t y  w i t h  ~ r C n o t  o n l y  does  n o t  d e t e r m i n e  
t h e  s u r g e s  in  Cpm, bu t  i t  i s  d o u b t f u l  t h a t  Cpm can  be found  f rom t h e  r e s u l t s  f o r  a s t a t i o n a r y  
u n i f o r m  f l o w .  

The p o s s i b i l i t i e s  o f  q u a s i s t a t i o n a r y  c a l c u l a t i o n s  f o r  n o n u n i f o r m  f l o w s  a r e  i l l u s t r a t e d  
in  F i g .  5,  wh ich  shows t h e  r e s u l t s  f o r  t h e  NACA-0012 p r o f i l e  f o r  t h e  same V m = ~ /90 .  Here 
c u r v e  1 i s  t h e  f u n c t i o n  Cy(~) f o r  a = 0 and ~ = C/2 ;  c u r v e  2 i s  f o r  a = 0 and ~ = C/2 ;  c u r v e  
2 i s  f o r  a = 0 and X = 3C; and c u r v e  3 i s  f o r  a = ~/90 and X = C/2.  The s o l i d  c u r v e s  a r e  
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for the nonstationary theory. The dashed curves are for the quasistationary theory in which 
42 = 0 and (3.1) is not used, but ~I(T) is the same. Curves ip and 2p are the functions Cpm 

for the same conditions as curves i and 2. The quasistationary approach leads to a quanti- 
tative difference from the nonstationary theory, but nonetheless there is no significant 
phase shift between them. In both cases surges in Cpm become stronger as ~ and 6 -I increase 
for constant V m. There can be no incident flow, because the time to pass through the non- 

uniformity is �9 ~ 0.01 sec; that is, sufficient to form a cavity. 

In conclusion, the model problem shows that the lack of success [4] in applying the 
theory [i] to propellers is most likely due to the nonuniformity of the incident flow on the 
blade. So far as can be judged from curve 2a (Fig. 4), some advantage in Cpm can be reached 
by rounding the leading edge - with a corresponding decrease of the isobaric section in solv- 
ing (1.1)-(1.7). Then curve 2a corresponds to the same flow as 2b, and the function Cpm(Cy) 
is given by curve la in the central part of Fig. 2 for the uniform incident flow for the same 
profile. The fundamental possibility of formulating this problem for a computer program is 
also obvious. However, the relatively small phase shift of the identical dot-dash and solid 
curves in Fig. 5 show that one can hope for the existence of a small set of characteristic 
quasistationary reverse problems for nonuniform flows, which makes it possible to optimize 
the nonstationary flow profiles. Evidently, the basic difficulty now is to formulate these 
problems. 

The authors are indebted to A. N. Ivanov for useful discussions. 
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NONSTATIONARY FLOWS OF AN INCOMPRESSIBLE VISCOUS 

FLUID WITH MEMORY IN CYLINDRICAL TUBES 

A. D. Khon'kin UDC 533.6.011 

In aerohydromechanical problems, the motion of a viscous thermally conducting gas 
traditionally is studied with the use of the Navier-Stokes equations, which are the result 
of the phenomenological closure of the conservation laws on the basis of linear transfer 
relations connecting the flow of momentum and energy with the spatial gradients of velocity 
and temperature - that is the transfer laws of Navier-Stokes and Fourier. In the case of 
slow quasistationary processes, these laws are derived from the kinetic Boltzmann equation 
with the use of the Chapman-Enskog method [i]. However, it has been shown [2, 3] that in 
the case of rapid nonstationary motions of a viscous thermally conducting gas, the expressions 
for the momentum and energy flows should include not only terms with spatial gradients of 
the velocity and temperature, but also time derivatives (accelerations) of these variables, 
which characterize the effects of temporal memory. The generalized hdyrodynamic equations 
[2, 3], which are called hydrodynamic equations for rapid processes, have been used to in- 
vestigate the distribution of small perturbations, the structure of shock waves, diffusion, 
etc., and have been used to obtain a series of important results. 

In this article, these hydrodynamic equations of rapid processes are used to study t~e 
nonstationary motions of a viscous incompressible fluid in circular cylindrical tubes. 
Exact solutions are found and analyzed for i) the pulsating motion of the fluid due to a 
harmonically varying pressure gradient and 2) an instantaneously induced motion of an initial- 
ly quiescent fluid. 

i. For continuous media, the most general form of the laws of conservation of mass, 
momentum, and energy are written as 

Op Opu~ Oui Ou~ 
0-7" + ~ . ~  = O, p-.a-f + pub a~'--~ = 

Oe Oe Ou k 

ep et'~k 
Ox i ~x h '~ 

Ou~ OQh 

where p is the density; u i (i = i, 2, 3) are the velocity components along the x i axis of 
the Cartesian coordinate system (xl, x2, x3) ; p is the pressure, e is the internal energy; 
Pik is the momentum flux (stress tensor); and Qi is the thermal flux (energy flux). In 
order to obtain a closed system of equations from the conservation laws (I.i), the momentum 
and energy fluxes must be expressed in terms of parameters of the hydrodynamic state p, ui, 
and e. 
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